Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Dev Comp Immunol ; 156: 105177, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593892

RESUMEN

Horizontal gene transfer (HGT) is an important evolutionary force in the formation of prokaryotic and eukaryotic genomes. In recent years, many HGT genes horizontally transferred from prokaryotes to eukaryotes have been reported, and most of them are present in arthropods. The Pacific white shrimp Litopenaeus vannamei, an important economic species of arthropod, has close relationships with bacteria, providing a platform for horizontal gene transfer (HGT). In this study, we analyzed bacteria-derived HGT based on a high-quality genome of L. vannamei via a homology search and phylogenetic analysis, and six HGT genes were identified. Among these six horizontally transferred genes, we found one gene (LOC113799989) that contains a bacterial chondroitinase AC structural domain and encodes an unknown glycosaminoglycan (GAG) lyase in L. vannamei. The real-time quantitative PCR results showed that the mRNA expression level of LOC113799989 was highest in the hepatopancreas and heart, and after stimulation by Vibrio parahaemolyticus, its mRNA expression level was rapidly up-regulated within 12 h. Furthermore, after injecting si-RNA and stimulation by V. parahaemolyticus, we found that the experimental group had a higher cumulative mortality rate in 48 h than the control group, indicating that the bacteria-derived GAG lyase can reduce the mortality of shrimp with respect to infection by V. parahaemolyticus and might be related to the resistance of shrimp to bacterial diseases. Our findings contribute to the study of the function of GAGs and provide new insights into GAG-related microbial pathogenesis and host defense mechanisms in arthropods.


Asunto(s)
Transferencia de Gen Horizontal , Penaeidae , Filogenia , Vibrio parahaemolyticus , Animales , Penaeidae/inmunología , Penaeidae/microbiología , Penaeidae/genética , Vibrio parahaemolyticus/fisiología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Hepatopáncreas/microbiología , Hepatopáncreas/inmunología , Hepatopáncreas/metabolismo , Bacterias , Inmunidad Innata/genética , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Vibriosis/inmunología
2.
Appl Microbiol Biotechnol ; 107(24): 7489-7500, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37768346

RESUMEN

Ample evidence shows dysbiosis in the gut microbiota when comparing healthy shrimp with those affected by severe acute hepatopancreatic necrosis disease (AHPND). However, the static comparison used in available studies leads to the uncertainties regarding how and to what extent the gut microbiota responds to the progressive severity of AHPND. In addition, shrimp AHPND is featured by rapid and massive mortality, thus the initiation of AHPND must be diagnosed for preemptive therapy. For these reasons, we explored the ecological assembly of gut microbiota over shrimp AHPND progression. Increasing AHPND severity was associated with linear increase in the copies of pirAB genes, relative abundance of gut Vibrio and potentially pathogenic, and reduction in the gut bacterial diversity, stability, and relative abundance of Bdellovibrio. Negative and significant association between gut Vibrio and Bdellovibrio were noted, indicating that compromised predation exerts a role in AHPND progression. Notably, the extents of departure to the healthy shrimp gut microbiota were positively coupled with the increasing severity of AHPND. After controlling the temporal variation in the gut microbiota as healthy shrimp age, we constructed a diagnosis model that accurately diagnosed the initial, progressed or moribund stages of AHPND, with an overall accuracy of 86.5%. Shrimp AHPND induced more stochastic gut microbiotas as a consequence of the attenuated ability of diseased shrimp to select their commensals, resulting in convergent bacterial communities between gut and rearing water over AHPND progression. Collectively, our findings provide important step toward the ecological assembly of gut microbiota implicating in AHPND etiology and in diagnosing AHPND stages. KEY POINTS: • The departure of shrimp gut microbiota positively linked with AHPND severity. • The diagnosis model accurately diagnosed the stages of AHPND. • Shrimp AHPND induced more stochastic gut microbiota.


Asunto(s)
Bdellovibrio , Microbioma Gastrointestinal , Penaeidae , Vibrio parahaemolyticus , Vibrio , Animales , Humanos , Hepatopáncreas/microbiología , Hepatopáncreas/patología , Progresión de la Enfermedad , Enfermedad Aguda , Crustáceos/microbiología , Necrosis/patología , Penaeidae/microbiología , Vibrio parahaemolyticus/genética
3.
J Appl Microbiol ; 132(4): 2649-2660, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35007373

RESUMEN

AIMS: The present study evaluated the effect of four functional diets and a reference diet on the survival and intestinal bacterial community of shrimp Penaeus vannamei infected with acute hepatopancreatic necrosis disease (AHPND). METHODS AND RESULTS: After 42 days of feeding trail, shrimp were inoculated with a Vibrio parahaemolyticus (CIB-0018-3) carrying the plasmid encoding for the PirAB toxins responsible for AHPND. After 120 h postinfection (hpi), shrimp fed with a diet containing 2% of a mix with Curcuma longa and Lepidium meyenii (TuMa) and a diet containing 0.2% of vitamin C (VitC) showed a significantly higher survival (85%) compared to the remaining treatments (50%-55%) (p < 0.05). Infected shrimp fed with TuMa diet, showed a significant reduction of Vibrionales, and VitC diet promoted an increase of Alteromonadales. CONCLUSIONS: Our findings suggest that the TuMa diet conferred protection against AHPND and could be attributed to a combined effect of antibacterial properties against Vibrionales, and promoting a desirable bacterial community in the shrimp intestine, while the VitC diet protection could be attributed to their antioxidant capacity and in a lower proportion to a bacterial modulation in shrimp gut. SIGNIFICANCE AND IMPACT OF THE STUDY: Acute hepatopancreatic necrosis disease is a devastating disease that significantly affects aquaculture production of shrimps. Therefore, the use of functional diets that promote resistance to AHPND represents a valuable tool to reduce the mortality of farmed shrimp.


Asunto(s)
Microbioma Gastrointestinal , Penaeidae , Vibrio parahaemolyticus , Animales , Dieta/veterinaria , Hepatopáncreas/microbiología , Necrosis , Penaeidae/microbiología
4.
Microbiol Spectr ; 9(2): e0038921, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34494878

RESUMEN

Increasing evidence denotes the role of the microbiome in biological invasions, since it is known that microbes can affect the fitness of the host. Here, we demonstrate differences in the composition of an invader's microbiome along the invasion range, suggesting that its microbial communities may affect and be affected by range expansion. Using a 16S rRNA gene amplicon sequencing approach, we (i) analyzed the microbiomes of different tissues (exoskeleton, hemolymph, hepatopancreas, and intestine) of a successful freshwater invader, the signal crayfish, (ii) compared them to the surrounding water and sediment, and (iii) explored their changes along the invasion range. Exoskeletal, hepatopancreatic, and intestinal microbiomes varied between invasion core and invasion front populations. This indicates that they may be partly determined by population density, which was higher in the invasion core than in the invasion front. The highly diverse microbiome of exoskeletal biofilm was partly shaped by the environment (due to the similarity with the sediment microbiome) and partly by intrinsic crayfish parameters (due to the high proportion of exoskeleton-unique amplicon sequence variants [ASVs]), including the differences in invasion core and front population structure. Hemolymph had the most distinct microbiome compared to other tissues and differed between upstream (rural) and downstream (urban) river sections, indicating that its microbiome is potentially more driven by the effects of the abiotic environment. Our findings offer an insight into microbiome changes during dispersal of a successful invader and present a baseline for assessment of their contribution to an invader's overall health and its further invasion success. IMPORTANCE Invasive species are among the major drivers of biodiversity loss and impairment of ecosystem services worldwide, but our understanding of their invasion success and dynamics still has many gaps. For instance, although it is known that host-associated microbial communities may significantly affect an individual's health and fitness, the current studies on invasive species are mainly focused on pathogenic microbes, while the effects of the remaining majority of microbial communities on the invasion process are almost completely unexplored. We have analyzed the microbiome of one of the most successful crayfish invaders in Europe, the signal crayfish, and explored its changes along the signal crayfish invasion range in the Korana River, Croatia. Our study sets the perspective for future research required to assess the contribution of these changes to an individual's overall health status and resilience of dispersing populations and their impact on invasion success.


Asunto(s)
Exoesqueleto/microbiología , Astacoidea/microbiología , Sedimentos Geológicos/microbiología , Microbiota/genética , Animales , Biopelículas/crecimiento & desarrollo , Croacia , ADN Bacteriano/genética , Europa (Continente) , Hemolinfa/microbiología , Hepatopáncreas/microbiología , Intestinos/microbiología , Especies Introducidas , ARN Ribosómico 16S/genética
5.
Carbohydr Polym ; 269: 118334, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34294344

RESUMEN

To explore the disease resistance mechanism of chitosan conjugates, chitosan-gentamicin conjugate (CS-GT) was synthesized and systematically characterized, the immune mechanism of CS-GT on Litopenaeus vannamei infected with Vibrio parahaemolyticus was further explored. The results showed that imine groups in CS-GT were effectively reduced. Dietary supplementation of CS-GT can significantly increase the survival rate, total hemocyte counts, the antioxidant and immune related enzyme activity levels of shrimps (P < 0.05), which are all dose-dependent under the experimental conditions. In addition, CS-GT can protect the hepatopancreas from invading bacteria and alleviate inflammation. Particularly, CS-GT promotes the expressions of legumain (LGMN), lysosomal acid lipase (LIPA) and Niemann-Pick type C2 (NPC2) up-regulated. It is speculated that CS-GT may stimulate the lysosome to phagocytose pathogens more effectively. In conclusions, shrimps fed with CS-GT can produce immune response via lysosome and greatly improve the disease resistance to Vibrio parahaemolyticus.


Asunto(s)
Quitosano/análogos & derivados , Quitosano/uso terapéutico , Gentamicinas/uso terapéutico , Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/uso terapéutico , Penaeidae/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Quitosano/síntesis química , Cisteína Endopeptidasas/metabolismo , Suplementos Dietéticos , Gentamicinas/síntesis química , Hemocitos/metabolismo , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/microbiología , Hepatopáncreas/patología , Factores Inmunológicos/síntesis química , Penaeidae/inmunología , Penaeidae/metabolismo , Penaeidae/microbiología , Fagocitos/metabolismo , Esterol Esterasa/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Vibrio parahaemolyticus/patogenicidad
6.
J Invertebr Pathol ; 184: 107643, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34224726

RESUMEN

In November 2019, an acute disease outbreak in Australian redclaw crayfish (Cherax quadricarinatus) occurred in a farm in Hubei, China, with a cumulative mortality rate of over 80%. One of the characteristic symptoms of the disease was blisters on the tail. This symptom is also common in diseased Procambarus clarkii every year in this country, but the causative agent has not been determined. This study analyzed the etiological characteristics of this disease. Bacterial isolation and identification combined with high-throughput sequencing analysis were conducted to obtain the microbiota characteristics in the hemolymph, hepatopancreas, and intestines. Results showed that this outbreak was caused by infection from Aeromonas hydrophila and Aeromonas veronii. The underlying cause was stress imposed on crayfish during transferring from outdoor pond to indoor pond because of temperature drops. Aeromonas infection caused remarkable changes in the structure of the microbial composition in the hemolymph, hepatopancreas, and intestines of the crayfish. The abundance of Aeromonas in the hemolymph of the sick crayfish was as high as 99.33%. In particular, KEGG metabolic pathway analysis showed that some antibiotic synthesis, enterobactin biosynthesis, and myo-inositol degradation pathways were abundant in healthy crayfish hemolymphs, which may be the mechanism of maintaining crayfish health. Conversely, inhibition of these pathways led to the disorder of microbiota structure, finally leading to the occurrence of diseases. To the knowledge of the authors, this study was the first to use high-throughput amplicon sequencing targeting the 16S rRNA gene to find the causative bacteria in aquatic animals. This protocol can provide more comprehensive and reliable evidence for pathogen identification, even if the pathogenic bacteria are anaerobes or other hard-to-culture bacteria.


Asunto(s)
Aeromonas hydrophila/fisiología , Aeromonas veronii/fisiología , Astacoidea/microbiología , Animales , China , Hemolinfa/microbiología , Hepatopáncreas/microbiología , Intestinos/microbiología , Cola (estructura animal)/microbiología , Cola (estructura animal)/patología
7.
Front Immunol ; 12: 634152, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054803

RESUMEN

Acute hepatopancreatic necrosis disease (AHPND) is a lethal disease in marine shrimp that has caused large-scale mortalities in shrimp aquaculture in Asia and the Americas. The etiologic agent is a pathogenic Vibrio sp. carrying binary toxin genes, pirA and pirB in plasmid DNA. Developing AHPND tolerant shrimp lines is one of the prophylactic approaches to combat this disease. A selected genetic line of Penaeus vannamei was found to be tolerant to AHPND during screening for disease resistance. The mRNA expression of twelve immune and metabolic genes known to be involved in bacterial pathogenesis were measured by quantitative RT-PCR in two populations of shrimp, namely P1 that showed susceptibility to AHPND, and P2 that showed tolerance to AHPND. Among these genes, the mRNA expression of chymotrypsin A (ChyA) and serine protease (SP), genes that are involved in metabolism, and crustin-P (CRSTP) and prophenol oxidase activation system 2 (PPAE2), genes involved in bacterial pathogenesis in shrimp, showed differential expression between the two populations. The differential expression of these genes shed light on the mechanism of tolerance against AHPND and these genes can potentially serve as candidate markers for tolerance/susceptibility to AHPND in P. vannamei. This is the first report of a comparison of the mRNA expression profiles of AHPND tolerant and susceptible lines of P. vannamei.


Asunto(s)
Perfilación de la Expresión Génica , Hepatopáncreas/metabolismo , Penaeidae/genética , Transcriptoma , Vibriosis/veterinaria , Vibrio parahaemolyticus/patogenicidad , Animales , Péptidos Catiónicos Antimicrobianos/genética , Quimotripsina/genética , Predisposición Genética a la Enfermedad , Hepatopáncreas/inmunología , Hepatopáncreas/microbiología , Hepatopáncreas/patología , Necrosis , Penaeidae/inmunología , Penaeidae/microbiología , Serina Endopeptidasas/genética , Serina Proteasas/genética , Vibriosis/genética , Vibriosis/inmunología , Vibriosis/microbiología , Vibrio parahaemolyticus/inmunología
8.
Genes (Basel) ; 12(4)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924545

RESUMEN

The interplay between shrimp immune system, its environment, and microbiota contributes to the organism's homeostasis and optimal production. The metagenomic composition is typically studied using 16S rDNA profiling by clustering amplicon sequences into operational taxonomic units (OTUs) and, more recently, amplicon sequence variants (ASVs). Establish the compatibility of the taxonomy, α, and ß diversity described by both methods is necessary to compare past and future shrimp microbiota studies. Here, we used identical sequences to survey the V3 16S hypervariable-region using 97% and 99% OTUs and ASVs to assess the hepatopancreas and intestine microbiota of L. vannamei from two ponds under standardized rearing conditions. We found that applying filters to retain clusters >0.1% of the total abundance per sample enabled a consistent taxonomy comparison while preserving >94% of the total reads. The three sets turned comparable at the family level, whereas the 97% identity OTU set produced divergent genus and species profiles. Interestingly, the detection of organ and pond variations was robust to the clustering method's choice, producing comparable α and ß-diversity profiles. For comparisons on shrimp microbiota between past and future studies, we strongly recommend that ASVs be compared at the family level to 97% identity OTUs or use 99% identity OTUs, both using tailored frequency filters.


Asunto(s)
Bacterias/clasificación , Biología Computacional/métodos , Variación Genética , Penaeidae/microbiología , Análisis de Secuencia de ADN/métodos , Animales , Bacterias/genética , ADN Bacteriano/genética , ADN Ribosómico/genética , Microbioma Gastrointestinal , Hepatopáncreas/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota , Penaeidae/genética , Filogenia , ARN Ribosómico 16S/genética
9.
J Invertebr Pathol ; 186: 107585, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33812923

RESUMEN

Cultivation of Penaeus vannamei (Pacific white shrimp) is faced with the serious problem of acute hepatopancreatic necrosis disease (AHPND), caused by Vibrio parahaemolyticus that carries plasmids containing binary toxin genes. The disease is typically moderated by the use of antibiotics. To investigate the control of AHPND and maintenance of water quality without the use of antibiotics, the supplementation of shrimp feed with anti-vibrio compounds from a crude extract of probiotic Rhodobacter sphaeroides SS15 was evaluated. The experimental design comprised four treatments: two that were challenged with AHPND-causing V. parahaemolyticus SR2 at a density of 6.0 × 105 cells mL-1 and two that were not challenged. The unchallenged groups comprised a control group that received commercial feed only (CF) and a group that received CF supplemented with 0.27% (w/w) of the extract of R. sphaeroides SS15 (modified CF: MCF). The treatments challenged with V. parahaemolyticus SR2 comprised a challenge group that received CF only (challenge CF: CF-SR2) and a challenge group that received modified CF (challenge MCF: MCF-SR2). V. parahaemolyticus SR2 was inoculated at the start of cultivation and at day 48 at the same cell density. No significant difference in growth performance was found among all treatments. All water quality parameters were better in the two treatments that received modified CF but excess nitrite, due to overfeeding in low salinity (5-8 ppt), caused shrimp mortality in all treatments. Vibrio populations were much higher in the CF treatments than in the modified CF treatments. After the first challenge, the survival rate was about 67% in both the CF-SR2 and MCF-SR2 treatments, compared with approximately 83% in the unchallenged treatments. One day after the second challenge, mortality in the CF-SR2 treatment was 100%, whereas 16.67% survived in the MCF-SR2 treatment. The survival rate was roughly 27% higher in the MCF treatment than in the CF treatment. The hepatopancreas and gut of both modified CF treatments showed no sign of AHPND. Via better water quality and trained immunity, the anti-vibrio compounds in the modified CF have great potential to increase the survival of cultivated shrimp infected with AHPND-causing strain SR2.


Asunto(s)
Hepatopáncreas/microbiología , Penaeidae/efectos de los fármacos , Penaeidae/microbiología , Rhodobacter sphaeroides/química , Vibrio parahaemolyticus/fisiología , Alimentación Animal/análisis , Animales , Dieta , Suplementos Dietéticos/análisis
10.
J Invertebr Pathol ; 186: 107554, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33596436

RESUMEN

Acute hepatopancreatic necrosis disease (AHPND) is an OIE-listed enteric disease that has continued to plague the shrimp aquaculture industry since its first discovery in 2009. AHPND is one of the biggest disease threats to the shrimp aquaculture industry along with white spot disease (WSD) which has severely impacted both crayfish and shrimp aquaculture. AHPND is caused by specific marine Vibrio spp. which carry plasmid-borne binary toxins PirAVp and PirBVp. This research investigated if crayfish are susceptible to AHPND-causing Vibrio parahaemolyticus (VpAHPND) to discern the potential risk that AHPND may pose to the crayfish aquaculture industry. Susceptibility was investigated by challenging Cherax quadricarinatus (Australian red claw crayfish) and Penaeus vannamei (Pacific white shrimp) with VpAHPND in a cohabitation immersion bioassay. Upon termination of the bioassay, crayfish survival was significantly higher than shrimp survival (87% vs. 33%). Hepatopancreas dissected from experimentally challenged animals were screened for the binary toxin genes pirAVp and pirBVp by real-time and duplex conventional PCR assays, and also were examined by H&E histology for the detection of characteristic AHPND pathology. Although AHPND toxin genes pirAVp and pirBVp were detected in a subset of crayfish samples, histopathology did not reveal any pathognomonic lesions that are characteristic of AHPND in any crayfish samples examined. These findings suggest that crayfish are likely resistant to AHPND.


Asunto(s)
Astacoidea/microbiología , Hepatopáncreas/microbiología , Penaeidae/microbiología , Vibrio parahaemolyticus/fisiología , Animales , Hepatopáncreas/patología , Necrosis/microbiología , Necrosis/patología
11.
Dev Comp Immunol ; 120: 103999, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33444644

RESUMEN

Acute hepatopancreatic necrosis disease (AHPND) is a serious bacterial disease caused by V. parahaemolyticus strains which contain a virulent plasmid that encodes a binary pore-forming Pir toxin. Typically, these AHPND-causing bacteria first colonize in the shrimp stomach and then later cross to the hepatopancreas. To do this, they must pass through structural barriers which include the pliant cuticular lining of the stomach lumen. A previous transcriptomic study of shrimp challenged with the virulent 5HP strain of V. parahaemolyticus found significant upregulation of a contig associated with the cuticular proteins LvDD9A and LvDD9B. Here, we confirmed that the mRNA levels of these two genes were significantly upregulated not only in 5HP-infected shrimp, but also in the stomach of shrimp challenged with the white spot syndrome virus (WSSV). Using dsRNA-mediated gene silencing, we found that AHPND-causing bacteria migrated to the hepatopancreas within 3 h of AHPND infection in LvDD9A/B-silenced shrimp. Shrimp shell hardness of LvDD9A/B-silenced shrimp was also significantly decreased. Conversely, we found that silencing of LvDD9A/B significantly inhibited both WSSV gene expression and genome replication. Taken together, our data suggests that LvDD9A and LvDD9B are involved in both AHPND and WSSV infection. However, in AHPND, these cuticular proteins help to prevent bacterial migration from the stomach to the hepatopancreas, whereas in WSSV infection, they facilitate viral gene expression and genome replication.


Asunto(s)
Proteínas Portadoras/metabolismo , Penaeidae/inmunología , Vibrio parahaemolyticus/inmunología , Virus del Síndrome de la Mancha Blanca 1/inmunología , Animales , Quitina/metabolismo , Hepatopáncreas/inmunología , Hepatopáncreas/microbiología , Interacciones Huésped-Patógeno/inmunología , Penaeidae/microbiología , Regulación hacia Arriba/inmunología
13.
J Invertebr Pathol ; 178: 107517, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33333063

RESUMEN

The occurrence of infectious diseases poses a significant threat to the aquaculture industry worldwide. Therefore, characterization of potentially harmful pathogens is one of the most important strategies to control disease outbreaks. In the present study, we investigated for the first time the pathogenicity of two Vibrio species, Vibrio metschnikovii, a foodborne pathogen that causes fatalities in humans, and Vibrio areninigrae, a bacteria isolated from black sand in Korea, using a crustacean model, the signal crayfish Pacifastacus leniusculus. Mortality challenges indicated that injection of V. metschnikovii (108 CFU/crayfish) has a mortality percentage of 22% in crayfish. In contrast, injection of P. leniusculus with 108 or 107 CFU of V. areninigrae resulted in 100% mortality within one and two days post-injection, respectively. V. areninigrae was successfully re-isolated from hepatopancreas of infected crayfish and caused 100% mortality when reinjected into new healthy crayfish. As a consequence of this infection, histopathological analysis revealed nodule formation in crayfish hepatopancreas, heart, and gills, as well as sloughed cells inside hepatopancreatic tubules and atrophy. Moreover, extracellular crude products (ECP's) were obtained from V. areninigrae in order to investigate putative virulence factors. In vivo challenges with ECP's caused >90% mortalities within the first 24 h. In vitro challenges with ECP's of hemocytes induced cytotoxicity of hemocytes within the first hour of exposure. These findings represent the first report that V. areninigrae is a highly pathogenic bacterium that can cause disease in crustaceans. On the contrary, V. metschnikovii could not represent a threat for freshwater crayfish.


Asunto(s)
Astacoidea/microbiología , Vibrio , Animales , Citotoxinas/farmacología , Branquias/microbiología , Branquias/patología , Hemocitos/efectos de los fármacos , Hepatopáncreas/microbiología , Hepatopáncreas/patología , Mortalidad , República de Corea , Alimentos Marinos/microbiología , Vibrio/aislamiento & purificación , Vibrio/patogenicidad , Vibriosis/transmisión
14.
J Fish Dis ; 44(3): 305-313, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33105037

RESUMEN

The microsporidia Hepatospora eriocheir has been identified as an emerging pathogenic agent in the commercial crab Eriocheir sinensis. Histology analysis indicated that hepatopancreas was a significant target for H. eriocheir infection. However, the functional consequences of such tissue tropism remain poorly studied. Considering that hepatopancreas was a centre for lipid metabolism and energy supply, we furtherly investigated the comparative lipid metabolism profiles between the control and H. eriocheir-infected hepatopancreas by liquid chromatography-mass spectrometry (LC-MS)-based lipidomics approach. Results confirmed that H. eriocheir induced apparent alterations of lipid metabolic phenotypes in hepatopancreas. Sixty-seven lipids, including triglyceride (TG), diglyceride (DG), sphingomyelin (SM), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), ceramide (CER), hexosyl ceramide (HEX CER) and (o-acyl)-1-hydroxy fatty acid (OAHFA), were significantly changed and could be determined as effective biomarkers. TG and DG accounted for the largest proportion (58.2% and 11.9%, respectively). Notably, over 94% of the distinguished lipids presented a similar modified trend with profoundly reduced contents, implying blatant energy exploitation of the parasite. These lipids were involved in pathways of energy and lipid metabolism and signal regulation. Such information suggests that H. eriocheir possibly "starves" the host via destructing hepatopancreas tissue together with appropriate host energy resources, leading to the corresponding alterations of lipid metabolism and a decrease in the colour of the hepatopancreas.


Asunto(s)
Braquiuros/microbiología , Trastornos del Metabolismo de los Lípidos/veterinaria , Microsporidios , Microsporidiosis/veterinaria , Animales , Biomarcadores , Braquiuros/metabolismo , Hepatopáncreas/metabolismo , Hepatopáncreas/microbiología , Lípidos/análisis
15.
Artículo en Inglés | MEDLINE | ID: mdl-32919192

RESUMEN

Rice-crayfish (Procambarus clarkii) coculture is an effective farming mode and has been promoted in various regions of China. However, infection in crayfish can be a significant economic drain. We found crayfish infected with Vibrio parahemolyticus (VP), and to understand the molecular mechanisms of the immune responses of crayfish to VP infection, Illumina sequencing was employed to identify changes in the mRNA of hepatopancreatic tissue. A total of 47.30 and 43.01million high-quality transcriptome reads were generated from the hepatopancreatic samples of the experimental group (EG) and control group (CG), respectively. We found 5559 genes were significantly differentially expressed, including 2521 up-regulated genes (45.35%) and 3038 down-regulated genes (54.65%). These genes were enriched in 126 GO terms and 76 KEGG pathways (P ≤ 0.05), including the MAPK and PI3K-Akt signaling pathways and cell adhesion molecules, with 23 up-regulated genes and 3 down-regulated genes related to immune responses in the EG relative to the CG. Histopathological analysis revealed that the epithelial cells of the hepatopancreatic tubules in the EG were severely atrophic, necrotic, and exfoliated, resulting in thin and collapsing hepatopancreatic tubules. The expression patterns of 8 differentially expressed genes involved in immune responses were validated by quantitative real-time RT-PCR. These results provide a valuable basis for the immune responses of crayfish to acute hepatopancreatic necrosis disease at transcriptome level.


Asunto(s)
Proteínas de Artrópodos/genética , Astacoidea/genética , Astacoidea/inmunología , Hepatopáncreas/inmunología , Inmunidad Innata/inmunología , Transcriptoma , Vibrio parahaemolyticus/fisiología , Animales , Proteínas de Artrópodos/metabolismo , Astacoidea/microbiología , Técnicas de Cocultivo , Regulación de la Expresión Génica , Hepatopáncreas/metabolismo , Hepatopáncreas/microbiología , Oryza/microbiología
16.
J Microbiol ; 58(8): 675-686, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32720097

RESUMEN

Acute hepatopancreatic necrosis disease (AHPND) is one of the most significant bacterial diseases in global shrimp culture, causing severe economic losses. In the present study, we carried out in vitro antimicrobial tests to investigate the disinfection efficacy of 14 common disinfectants toward different AHPND-causing Vibrio spp., including eight isolates of V. parahaemolyticus, four isolates of V. campbellii, and one isolate of V. owensii. Polyhexamethylene biguanidine hydrochloride (PHMB) was revealed to possess the strongest inhibitory activity. Through analyzing and evaluating the results of antimicrobial tests and acute toxicity test, we selected PHMB and hydrogen peroxide (H2O2) for further clinical protection test. Clinical manifestations indicated that both PHMB (2 mg/L and 4 mg/L) and H2O2 (12 mg/L) could effectively protect juvenile Penaeus vannamei from the infection of V. parahaemolyticus isolate Vp362 at 106 CFU/ml, and the survival rate was over 80%. When the bacterial concentration was reduced to 105 CFU/ml, 104 CFU/ml, and 103 CFU/ml, the survival rate after treated by 1 mg/L PHMB was 64.44%, 93.33%, and 100%, respectively. According to the results, PHMB and H2O2 showed a lower toxicity while a better protection activity, particularly against a lower concentration of the pathogens. Therefore, these two disinfectants are proved to be promising disinfectants that can be applied to prevent and control AHPND in shrimp culture. Moreover, the methods of this study also provided valuable information for the prevention of other important bacterial diseases and suggested a reliable means for screening potential drugs in aquaculture.


Asunto(s)
Antiinfecciosos Locales/farmacología , Desinfección/métodos , Penaeidae/microbiología , Vibrio parahaemolyticus/efectos de los fármacos , Vibrio/efectos de los fármacos , Animales , Acuicultura/métodos , Biguanidas/farmacología , Hepatopáncreas/microbiología , Hepatopáncreas/patología , Peróxido de Hidrógeno/farmacología , Alimentos Marinos/microbiología , Vibrio/aislamiento & purificación , Vibrio parahaemolyticus/aislamiento & purificación
17.
J Invertebr Pathol ; 174: 107424, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32535000

RESUMEN

In Latin American shrimp farming, acute hepatopancreatic necrosis disease (AHPND) does not cause the acute mortalities observed in SE Asia. Herein we report for the first time a new phase of infection of AHPND, a chronic phase based on two experimental AHPND-challenge trials using shrimp lines from Latin America. Three shrimp lines of Penaeus vannamei were challenged with a highly pathogenic strain of Vibrio parahaemolyticus causing AHPND (VPAHPND). PCR and histopathology assays were used for confirmation of AHPND in the trials. The first study was to compare survival between the lines. A follow-up trial was conducted to document hepatopancreas heterotrophic bacterial count and to measure the expression of VPAHPND binary toxin genes (pirAB genes) at 24 h.p.i. One of the Latin American shrimp lines, APE1, had significantly higher survival than recorded for the other two lines (APE2 & APE3) and the specific-pathogen-free positive control line. Histopathology showed typical AHPND acute and terminal phase lesions in VPAHPND challenged groups, although destructive cellular changes were more pronounced in the SPF line. Histopathology of animals surviving AHPND revealed a unique chronic phase of infection that resembles septic hepatopancreatic necrosis (SHPN), recognized as diagnostic of digestive tract vibriosis. Data to support our finding, including a quantitative RT-PCR assay, confirmed the expression of pirAB genes and the differential hepatopancreas heterotrophic plate count (HPC) among the different lines challenged. The results explain in part why the shrimp industry in some Latin American countries continues to grow despite the presence of AHPND. In addition, the biology and pathology of AHPND resistant/tolerant shrimp appear to be quite unique in this Latin American shrimp population.


Asunto(s)
Hepatopáncreas/microbiología , Penaeidae/microbiología , Vibrio parahaemolyticus/fisiología , Animales , Hepatopáncreas/patología
18.
Dev Comp Immunol ; 111: 103756, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32485179

RESUMEN

Crustins are a family of antimicrobial peptides (AMP) with multiple functions, including antimicrobial activity, capability of protease inhibition, phagocytosis promotion, and wound healing in crustaceans. Till present, several members of crustins have been identified and their activities were studied. However, there are still less investigations on how they play functions in vivo. Here, we identified a novel crustin with an atypical WAP domain, LvCrustin Ⅰ-1, which is mainly distributed in tissues, including intestine, gill, epidermis and stomach of the shrimp Litopenaeus vannamei. The expression level of LvCrustin Ⅰ-1 was significantly up-regulated at 3 h, 6 h, 12 h, and 24 h after Vibrio parahaemolyticus infection. Knockdown of LvCrustin Ⅰ-1 with dsRNA resulted in a significant increase of the bacteria number in hepatopancreas of shrimp upon V. parahaemolyticus infection, showing that LvCrustin Ⅰ-1 participated in pathogen infection process. Recombinant LvCrustin Ⅰ-1 protein showed microorganism-binding activity rather than antibacterial activity against tested bacteria. Furthermore, significant difference existed between the intestinal microbiota in shrimp before and after LvCrustin Ⅰ-1 knockdown based on the result of alpha and NMDS analyses. Knockdown of LvCrustin Ⅰ-1 increased the proportion of Demequina, Nautella, Propionibacterium, Anaerospora and decreased the proportion of Bacteroidia and Vibrio. These data suggest that LvCrustin Ⅰ-1 might perform its immunological function through modulation of the intestinal microbiota homeostasis rather than direct inhibition of bacterial growth in shrimp.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de Artrópodos/metabolismo , Hepatopáncreas/fisiología , Penaeidae/inmunología , Vibriosis/inmunología , Vibrio parahaemolyticus/fisiología , Animales , Péptidos Catiónicos Antimicrobianos/genética , Proteínas de Artrópodos/genética , Células Cultivadas , Clonación Molecular , Microbioma Gastrointestinal/genética , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hepatopáncreas/microbiología , Homeostasis , Inmunidad , Proteínas de la Leche/genética , Filogenia , Dominios Proteicos/genética , Regulación hacia Arriba
19.
Ecotoxicol Environ Saf ; 199: 110738, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32447139

RESUMEN

The increasing prevalence of antibiotic resistance genes (ARGs) is a challenge to the health of humans, animals and the environments. Human activities and aquatic environments can increase ARGs. Few studies have focused on the temporal variation of aquatic bacteria with multiple ARGs in aquatic environments affected by human production activity. We studied culturable bacteria (CB) carrying ARGs, including sul1, sul2, floR, strA and gyrA in the shrimp hepatopancreas (HP) and in pond water during shrimp culture. The relative abundance of ARGs carried by CB in HP was higher than that in water (P < 0.05). However, CB carrying ARGs generally varied in random pattern. The correlation of sul2 abundance was significantly positive in HP, while that of strA abundance was significantly negative in water (P < 0.05) during shrimp culture. Among all of the CB, 33.59% carried multiple ARGs. Temporal distance-decay analysis indicated that CB carrying ARGs in water were more resistant to the effects of human activity. CB carrying ARGs varied temporally in HP and pond water during shrimp culture. These results demonstrate that multiple ARGs are carried by CB, and these varied with the phase of aquatic culture.


Asunto(s)
Crustáceos/microbiología , Farmacorresistencia Microbiana/genética , Monitoreo del Ambiente/métodos , Genes Bacterianos , Hepatopáncreas/microbiología , Estanques/microbiología , Animales , Acuicultura , Bacterias/genética , Bacterias/aislamiento & purificación , China , Crustáceos/crecimiento & desarrollo , Humanos , Alimentos Marinos , Microbiología del Agua
20.
J Invertebr Pathol ; 172: 107347, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32119955

RESUMEN

A fluorescent stain, calcofluor white (CFW), was used for detection of spores of the microsporidium Enterocytozoon hepatopenaei (EHP). EHP spores in suspension, in feces, or in the infected hepatopancreas of the shrimp Penaeus vannamei, can be easily stained with this chitin and cellulose binding dye to show distinct blue-white fluorescent oval walls. The dye does not stain the host tissues. EHP spores showed orange-red spots by staining with hematoxylin and phloxine (H&P) in the section. CFW staining provides a simple and rapid method for determining the presence of EHP spores in fecal or tissue samples.


Asunto(s)
Bencenosulfonatos/química , Enterocytozoon/aislamiento & purificación , Penaeidae/microbiología , Esporas Fúngicas/aislamiento & purificación , Coloración y Etiquetado/métodos , Animales , Heces/microbiología , Hepatopáncreas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...